Small heat shock proteins can release light dependence of tobacco seed during germination.

نویسندگان

  • Hyun Jo Koo
  • Soo Min Park
  • Keun Pill Kim
  • Mi Chung Suh
  • Mi Ok Lee
  • Seong-Kon Lee
  • Xia Xinli
  • Choo Bong Hong
چکیده

Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Expression of BiP Is Associated with Treatments that Extend Storage Longevity of Primed Tomato Seeds

While seed priming (hydration in water or osmotic solutions followed by drying) enhances seed germination performance, the longevity of primed seeds in storage often is reduced. Postpriming treatments including a reduction in seed water content followed by incubation at 37 or 40 °C for 2 to 4 h can substantially restore potential longevity in tomato (Lycopersicon esculentum Mill.) seeds. These ...

متن کامل

Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation.

Small heat-shock proteins (sHSPs) accumulate in plants in response to high-temperature stress. Specific sHSPs, the cytosolic class I and class II proteins, are also expressed in the absence of stress in maturing seeds of several species, and a role for these proteins in desiccation tolerance, dormancy, or germination has been hypothesized. We demonstrate that class I sHSPs are expressed during ...

متن کامل

The Opuntia streptacantha OpsHSP18 Gene Confers Salt and Osmotic Stress Tolerance in Arabidopsis thaliana

Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs) are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18) from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different st...

متن کامل

Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress

Small heat shock proteins (sHSPs) are a diverse group of proteins and are highly abundant in plant species. Although majority of these sHSPs were shown to express specifically in seed, their potential function in seed physiology remains to be fully explored. Our proteomic analysis revealed that OsHSP18.2, a class II cytosolic HSP is an aging responsive protein as its abundance significantly inc...

متن کامل

An imperfect heat shock element and different upstream sequences are required for the seed-specific expression of a small heat shock protein gene.

Chimeric constructs containing the promoter and upstream sequences of Ha hsp17.6 G1, a small heat shock protein gene, reproduced in transgenic tobacco (Nicotiana tabacum) its unique seed-specific expression patterns previously reported in sunflower. These constructs did not respond to heat shock, but were expressed without exogenous stress during late zygotic embryogenesis coincident with seed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 167 3  شماره 

صفحات  -

تاریخ انتشار 2015